PHYS4150 - PLASMA PHYSICS

LECTURE 2 - PLASMA PROPERTIES: DENSITY AND
 TEMPERATURE

Sascha Kempf*
G135, University of Colorado, Boulder
Fall 2020

Plasma properties: Density and Temperature.

1 PLASMA PROPERTIES

COMPOSITION: ions and electrons
NUMBER DENSITY: ions and electrons in laboratory plasmas $\sim 10^{8}-10^{14} \mathrm{~cm}^{-3}$
TEmperature: measured in electron Volts $(e \mathrm{~V}), 1 e \mathrm{~V}=11,600 \mathrm{~K}$
$e \cdot U=\frac{m}{2} v^{2}=\mathrm{k}_{\mathrm{B}} T=e \cdot 1 \mathrm{~V}$ $1 e \mathrm{~V}=1.602 \cdot 10^{-19} \mathrm{C} \cdot \mathrm{J} / \mathrm{C}$ $1 e \mathrm{~V}=1.602 \cdot 10^{-19} \mathrm{~J}$

TIME SCALE: plasma frequency $\omega_{p}=2 \pi f_{p}$
VELOCITY SCALE: thermal velocity $v_{t h}=\sqrt{\frac{8 k T}{\pi m}}$

2 REVIEW: THERMODYNAMICS

Let us starting with a review of some important thermodynamical principles.

2.1 First law of thermodynamics

The First Law of Thermodynamics states that the change of the internal energy U is given by the sum of the work δW and heat δQ exchanged with the environment:

$$
d U=\delta W+\delta Q
$$

U is an extensive state func-
(1) tion and a thermodynamical potential

Note the use of δ instead of d. This indicates that the amount of exchanged heat

[^0]and work does depend on how the thermodynamical process is performed, and thus, δW and δQ are not exact differentials. In contrast, the change of the interior energy depends only on the initial and final state and is therefore an exact differential.

2.2 Second law of thermodynamics

The Second Law of Thermodynamics is closely related to the entropy, which is defined as the reversibly exchanged heat at constant temperature T
S is an extensive state function, while T is an intensive state function

$$
\begin{equation*}
d S=\frac{\delta Q}{T} . \tag{2}
\end{equation*}
$$

The second law says now that for a closed system at equilibrium the entropy does not change, i.e.

$$
\begin{equation*}
d S=0 \tag{3}
\end{equation*}
$$

At a given temperature the amount of irreversibly exchanged heat is always smaller than the amount of reversibly exchanged heat, and thus

$$
\begin{equation*}
\delta Q_{i r r}<\delta Q_{r e v}=T d S \tag{4}
\end{equation*}
$$

For a closed system at equilibrium the entropy takes its maximum value $S_{\max }$, while for an irreversible process $d S>0$.

2.3 Ideal gas

In an ideal gas the particles are assumed to undergo only elastic collisions. In this case the equation of state is

$$
\begin{equation*}
p V=N \mathrm{k}_{\mathrm{B}} T \tag{5}
\end{equation*}
$$

where p, V, and N are the pressure, volume, and particle number of the gas. The Boltzmann constant k_{B}

$$
\begin{equation*}
\mathrm{k}_{\mathrm{B}}=1.308 \cdot 10-23 \mathrm{~J} / \mathrm{K}=8.617 \cdot 10^{-5} \mathrm{eV} . \tag{6}
\end{equation*}
$$

relates the average kinetic energy of the gas with the temperature. For an ideal gas the average (translational) energy is

$$
\begin{equation*}
\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} \mathrm{k}_{\mathrm{B}} T \tag{7}
\end{equation*}
$$

3 DENSITY
SOLID As an example let us consider aluminum which has a density of $\rho_{A l}=$ $3 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and an atomic mass of $m_{A l}=27 \mathrm{u}$. We now want to find the number of $u=1.66 \cdot 10^{-27} \mathrm{~kg}$ is the aluminum atoms per unit volume:

$$
\begin{equation*}
n_{A l}=\frac{\rho_{A l}}{m_{A l} u}=\frac{3 \cdot 10^{3} \mathrm{~kg} / \mathrm{m}^{3}}{27 \cdot 1.66 \cdot 10^{-27} \mathrm{~kg}}=6.8 \cdot 10^{28} \mathrm{~m}^{-3} . \tag{8}
\end{equation*}
$$

AIR At standard pressure one mol of air has a volume of $22.41=22.4 \cdot 10^{-3} \mathrm{~m}^{3}$. One mol are $6 \cdot 10^{23}$ particles, and thus

$$
\begin{equation*}
n_{\text {air }}=\frac{6 \cdot 10^{23}}{22.4 \cdot 10^{-3} \mathrm{~m}^{3}}=2.7 \cdot 10^{25} \mathrm{~m}^{-3} \tag{9}
\end{equation*}
$$

	$n\left[\mathrm{~m}^{-3}\right]$	$\mathrm{kT}[\mathrm{eV}]$
Solar wind @ Earth	5	50
ionosphere	$10^{5}-10^{6}$	0.02
Solar corona	10^{6}	100
tokamak	10^{14}	10^{4}
laser-produced	10^{20}	100
glow discharge	$10^{8}-10^{10}$	2

4 TEMPERATURE

Let us have a closer look at the velocity distribution $f(\mathbf{v})$ of a gas and how it relates to its temperature. Because the gas motion is isotropic, $f(\mathbf{v})$ can only be a function of \mathbf{v}^{2}. On the other hand, the components of $f(\mathbf{v})$ must be independent, which implies that

$$
\begin{equation*}
f\left(\mathbf{v}^{2}\right)=f\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)=f\left(v_{x}^{2}\right) f\left(v_{y}^{2}\right) f\left(v_{z}^{2}\right) . \tag{10}
\end{equation*}
$$

The only function that fulfills Eq. (10) is

$$
\begin{equation*}
f\left(\mathbf{v}^{2}\right)=c \cdot e^{a \mathbf{v}^{2}} . \tag{11}
\end{equation*}
$$

To find the constant c we require that the components of f are normalized, i.e. $\int f_{i}\left(v_{i}\right) d v=1$, which is only possible if $a<0$, and

$$
\begin{equation*}
1=c \int e^{-a v^{2}} d v=c \sqrt{\frac{\pi}{a}} \tag{12}
\end{equation*}
$$

To obtain the constant a we note that in a gas at equilibrium the energy per degree of freedom is $\frac{1}{2} \mathrm{k}_{\mathrm{B}} T$, and therefore

$$
\begin{equation*}
\mathrm{k}_{\mathrm{B}} T=m\left\langle v_{i}^{2}\right\rangle=m \int v_{i}^{2} f\left(v_{i}\right) d v_{i}=m \sqrt{\frac{\pi}{a}} \int \exp \left\{-a v_{i}^{2}\right\} v_{i}^{2} d v_{i} \tag{13}
\end{equation*}
$$

$d v_{i}=\frac{1}{2 \sqrt{a}} \frac{d x}{\sqrt{x}}$
Replacing the argument of the exponential by $x=a v_{i}^{2}$ we get

$$
\begin{equation*}
\mathrm{k}_{\mathrm{B}} T=\frac{m}{\sqrt{\pi} a} \int_{0}^{\infty} e^{-x} \sqrt{x} d x=\frac{m}{\sqrt{\pi} a} \Gamma\left(\frac{3}{2}\right) \tag{14}
\end{equation*}
$$

where the Gamma function $\Gamma(x)$ is defined as

$$
\begin{align*}
\Gamma(z) & =\int_{0}^{\infty} e^{-x} x^{z-1} d x \tag{15}\\
\Gamma(z+1) & =\Gamma(z) \cdot z \tag{16}\\
\Gamma(1) & =1 \tag{17}\\
\Gamma\left(\frac{1}{2}\right) & =\sqrt{\pi} \tag{18}
\end{align*}
$$

From this follows that $\Gamma(3 / 2)=\frac{\sqrt{\pi}}{2}$ and

$$
\begin{aligned}
& f(v)=\sqrt{\frac{m}{2 \pi \mathrm{k}_{\mathrm{B}} T}} \exp \left\{-\frac{m v^{2}}{2 \mathrm{k}_{\mathrm{B}} T}\right\} \\
& f(\mathbf{v})=\left\{\frac{m}{2 \pi \mathrm{k}_{\mathrm{B}} T}\right\}^{3 / 2} \exp \left\{-\frac{m \mathbf{v}^{2}}{2 \mathrm{k}_{\mathrm{B}} T}\right\}
\end{aligned}
$$

[^0]: *sascha.kempf@colorado.edu

